“Easy spin-symmetry-adaptation.” Exploitation of the Clifford algebra unitary group in correlated many-electron theories

نویسنده

  • Nicholas D. K. Petraco
چکیده

An efficient scheme for the generation of spin-symmetry adapted matrix elements required by all correlated many electron wave function methods of electronic structure theory is briefly outlined. Matrix elements can be formulated in the Clifford algebra unitary group representation of Gel’fand-Tsetlin basis, Clifford-Weyl basis, Jeziorski-Paldus-Jankowski basis or determinant basis in order to exploit the U(2n)←↩ U(n) or U(22n)←↩ U(2n) embeddings. The former embedding, which will be the focus of this paper, ensures automatic spin adaptation for open-shell and closed-shell cases and reduces the calculation of complicated matrix elements in terms of U [u(n)] to matrix elements involving U(2n) generators acting on two-box Weyl tableaux. The advantage of such a scheme is that the action of U(2n) generators on two-box U(2n)-modules is essentially a linear combination of Kronecker deltas. This scheme, provides an alternative to Wick’s theorem for the computation of matrix elements and has been implemented with the MathematicaT M computer algebra program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Wavefunctions for Correlated Quantum Oscillators IV: Bosonic and Fermionic Gauge Fields

The hamiltonian quantum dynamical structures in the Gel’fand triplets of spaces used in preceding installments to describe correlated hamiltonian dynamics on phase space by quasi-invariant measures are shown to possess a covering structure, which is constructed explicitly using the properties of Clifford algebras. The unitary Clifford algebra is constructed from the intersection of the orthogon...

متن کامل

RELATIVISTIC SU(4) AND QUATERNIONS International Conference on the Theory of the Electron,

A classification of hadrons and their interactions at low energies according to SU(4) allows to identify combinations of the fifteen mesons π, ω and ρ within the spin-isospin decomposition of the regular representation 15. Chirally symmetric SU(2)×SU(2) hadron interactions are then associated with transformations of a subgroup of SU(4). Nucleon and Delta resonance states are represented by a sy...

متن کامل

Clifford modules and symmetries of topological insulators

We complete the classification of symmetry constraints on gapped quadratic fermion hamiltonians proposed by Kitaev. The symmetry group is supposed compact and can include arbitrary unitary or antiunitary operators in the Fock space that conserve the algebra of quadratic observables. We analyze the multiplicity spaces of real irreducible representations of unitary symmetries in the Nambu space. ...

متن کامل

Quantum Gates and Clifford Algebras

Clifford algebras are used for definition of spinors. Because of using spin-1/2 systems as an adequate model of quantum bit, a relation of the algebras with quantum information science has physical reasons. But there are simple mathematical properties of the algebras those also justifies such applications. First, any complex Clifford algebra with 2n generators, Cll(2n, C), has representation as...

متن کامل

ابررسانای d- موجی، پادفرومغناطیس و مایع اسپینی در ابررساناهای آلی شبه دوبعدی

  The self-energy-functional approach is a powerful many-body tool to investigate different broken symmetry phases of strongly correlated electron systems. We use the variational cluster perturbation theory (also called the variational cluster approximation) to investigate the interplay between the antiferromagnetism and d-wave superconductivity of κ-(ET)2 X conductors. These compounds are desc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006